Incorporating prior knowledge in medical image segmentation: a survey
نویسندگان
چکیده
Medical image segmentation, the task of partitioning an image into meaningful parts, is an important step toward automating medical image analysis and is at the crux of a variety of medical imaging applications, such as computer aided diagnosis, therapy planning and delivery, and computer aided interventions. However, the existence of noise, low contrast and objects’ complexity in medical images are critical obstacles that stand in the way of achieving an ideal segmentation system. Incorporating prior knowledge into image segmentation algorithms has proven useful for obtaining more accurate and plausible results. This paper surveys the different types of prior knowledge that have been utilized in different segmentation frameworks. We focus our survey on optimization-based methods that incorporate prior information into their frameworks. We review and compare these methods in terms of the types of prior employed, the domain of formulation (continuous vs. discrete), and the optimization techniques (global vs. local). We also created an interactive online database of existing works and categorized them based on the type of prior knowledge they use. Our website is interactive so that researchers can contribute to keep the database up to date. We conclude the survey by discussing different aspects of designing an energy functional for image segmentation, open problems, and future perspectives.
منابع مشابه
An Overview of Interactive Medical Image Segmentation
Image segmentation is often described as partitioning an image into a finite number of semantically non-overlapping regions. In medical applications, it is a fundamental process in most systems that support medical diagnosis, surgical planning and treatments. Generally, this process is done manually by clinicians, which may be time-consuming and tedious. To alleviate the problem, a number of in...
متن کاملIncorporating priors for medical image segmentation using a genetic algorithm
Medical image segmentation is typically performed manually by a physician to delineate gross tumor volumes for treatment planning and diagnosis. Manual segmentation is performed by medical experts using prior knowledge of organ shapes and locations but is prone to reader subjectivity and inconsistency. Automating the process is challenging due to poor tissue contrast and ill-defined organ/tissu...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملA shape prior-based MRF model for 3D masseter muscle segmentation
Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using ...
متن کاملStar Shape Prior for Graph-Cut Image Segmentation
In recent years, segmentation with graph cuts is increasingly used for a variety of applications, such as photo/video editing, medical image processing, etc. One of the most common applications of graph cut segmentation is extracting an object of interest from its background. If there is any knowledge about the object shape (i.e. a shape prior), incorporating this knowledge helps to achieve a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.01092 شماره
صفحات -
تاریخ انتشار 2016